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Introduction 1
1.1 What Is Digital Image Processing?
We must begin our journey by taking issue with the philosophical adage that “a
picture is worth a thousand words.” It is my belief that a picture cannot begin to
convey the depth of human experience and wisdom embedded in the words of
Shakespeare, Dostoevsky, Dante, or Moses. A picture cannot convey with due
precision the mathematical underpinnings of the discoveries of Galileo or Pas-
cal nor can a picture give expression to the philosophy of Augustine, Plato, or
Edwards. Nonetheless, while pictures do not carry the precision of written lan-
guage, they do contain a wealth of information and have been used throughout
the centuries as an important and useful means of communication. An image is
a picture representing visual information. A digital image is an image that can be
stored in digital form.

Prior to the advent of computation, images were rendered on papyrus, paper,
film, or canvas using ink or paint or photosensitive chemicals. The non-digital
images are prone to fading and hence suffer loss of image quality due to exposure
to light or temperature extremes. Also, since non-digital images are fixed in
some physical medium it is not possible to precisely copy a non-digital image.
Throughout the annals of art history, forgers have attempted to copy paintings of
well-known masters but usually fail due to their inability to precisely duplicate
either a style or an original work. Han van Meegeren is one of the best known
art forgers of the 20th century. His technique so closely mimicked the style and
colors of the art masters that he was able to deceive even the most expert art
critics of his time. His most famous forgery, The Disciples at Emmaus, was created
in 1936 and was purportedly created by the well-known Dutch artist Johannes
Vermeer. His work was finally exposed as fraudulent, however, at least in part
by a chemical analysis of the paint, which showed traces of a plastic compound
that was not manufactured until the 20th century!

Digital images, however, are pictures that are stored in digital form and that
are viewable on some computing system. Since digital images are stored as bi-
nary data, the digital image never fades or degrades over time and the only way

1
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2 1. Introduction

to destroy a digital image is to delete or corrupt the file itself. In addition, a dig-
ital image can be transmitted across the globe in seconds and can be efficiently
and precisely copied without any loss of quality.

Digital image processing is a field of study that seeks to analyze, process, or
enhance a digital image to achieve some desired outcome. More formally, digital
image processing can be defined as the study of techniques for transforming a
digital image into another (improved) digital image or for analyzing a digital
image to obtain specific information about the image.

From the cradle to the grave we are accustomed to viewing life through dig-
ital images. A parent’s first portrait of their child is often taken before they are
even born through the use of sophisticated ultrasound imaging technology. As
the child grows, the parents capture developmental milestones using palm-sized
digital video cameras. Portraits are sent over email to relatives and friends and
short video clips are posted on the family’s website. When the child breaks an
arm playing soccer, the emergency-room physician orders an x-ray image and
transmits it over the Internet to a specialist hundreds of miles away for immedi-
ate advice. During his lifetime the child will watch television images that have
been digitally transmitted to the dish on top of his house, view weather satellite
images on the Internet to determine whether or not to travel, and see images of
war where smart bombs find their target by “seeing” the enemy.

Computer graphics is a closely related field but has a different goal than im-
age processing. While the primary goal of computer graphics is the efficient
generation of digital images, the input to a graphics system is generally a geo-
metric model specifying the shape, texture, and color of all objects in the virtual
scene. Image processing, by contrast, begins with a digital image as input and
generates, typically, a digital image as output.

Computer vision, or machine vision, is another increasingly important rel-
ative of image processing where an input image is analyzed in order to deter-
mine its content. The primary goal of computer vision systems is the inverse of

Figure 1.1. Disciplines related to image processing.
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1.1. What Is Digital Image Processing? 3

Figure 1.2. Image processing pipeline.

computer graphics: to analyze a digital image and infer meaningful information
about the scene depicted by the image. Figure 1.1 illustrates the roles and rela-
tionships between each of these three disciplines where boxes represent a type of
data while the connecting arrows show the typical input and output for a field of
study.

A complete digital image processing system is able to service every aspect
of digital image handling. Figure 1.2 shows the five typical stages in an image
processing pipeline: image acquisition, image processing, image archival, image
transmission, and image display. Image acquisition is the process by which digi-
tal images are obtained or generated. Image processing is the stage where a digi-
tal image is enhanced or analyzed. Image archival is concerned with how digital
images are represented in memory. Image transmission is likewise concerned
with data representation but places added emphasis on the robust reconstruc-
tion of potentially corrupted data due to transmission noise. Image display deals
with the visual display of digital image data whether on a computer monitor,
television screen, or printed page.

A visual example of the pipeline stages is given in Figure 1.3. During the
image acquisition stage, an approximation of a continuous tone or analog scene
is recorded. Since the captured image is an approximation, it includes some
error which is introduced through sampling and quantization. During archival, a
further degradation of quality may occur as the concern to conserve memory and
hence conserve transmission bandwidth competes with the desire to maintain a
high quality image. When the image is displayed, in this case through printing
in black and white, image quality may be compromised if the output display is
unable to reproduce the image with sufficient resolution or depth of color.

Construction of a complete image processing system requires specialized
knowledge of how hardware architecture, the physical properties of light, the
workings of the human visual system, and the structure of computational tech-
niques affects each stage in the pipeline. Table 1.1 summarizes the most impor-
tant topics of study as they correspond to each of the five primary stages in an
image processing system. Of course a deep understanding of each of the listed
areas of study is required to construct an efficient and effective processing mod-
ule within any stage of the pipeline. Nevertheless, each stage of the processing
pipeline raises unique concerns regarding memory requirements, computational
efficiency, and image quality. A thorough understanding of the affects of each
stage on image processing is required in order to achieve the best possible balance
among memory, computation time, and image quality.
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(a) Scene. (b) Acquired.

(c) Archived. (d) Displayed.

Figure 1.3. Effects of image processing stages on a processed image.
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1.2. Why Digital Image Processing? 5

Processing Stage Topic of Study

acquisition
physical properties of light
human perception
mathematical models of color

processing
software architecture
data representation
algorithm design

archival
compression techniques
data representation

transmission
data representation
transmission protocols

display
digital halftoning
color models
human perception

Table 1.1. Topics of study in image processing.

These five stages serve as a general outline for the remainder of this text. The
image processing topics associated with each stage of the processing pipeline will
be discussed with an emphasis on the processing stage which lies at the heart of
image processing. By contrast, little coverage will be allocated to transmission
issues in particular.

1.2 Why Digital Image Processing?
Digital images are used across an exceptionally wide spectrum of modern life.
Ranging from digital cameras and cell phones to medical scans and web tech-
nology, digital image processing plays a central role in modern culture. This sec-
tion provides examples of practical applications of image processing techniques.
A general overview of these applications suffices to illustrate the importance,
power, and pervasiveness of image processing techniques.

1.2.1 Medicine
Digital imaging is beginning to supplant film within the medical field. Computed
tomography (CT) is a noninvasive imaging technique used to diagnose various
ailments such as cancers, trauma, and musculoskeletal disorders. Magnetic reso-
nance imaging (MRI) is a similarly noninvasive method for imaging the internal
structure and function of the body. MRI scans are more amenable to diagnosing
neurological and cardiovascular function than CT scans due to their greater con-
trast among soft tissue volumes. Figure 1.4 gives an example of both MRI and
CT images where the MRI highlights contrast in the internal soft-tissue organs
of a human pelvis while the CT image captures the internal skeletal structure of
a human skull.
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6 1. Introduction

(a) MRI. (b) CT.

Figure 1.4. Medical images.

Since errors in the acquisition, processing, archival, or display of medical im-
ages could lead to serious health risks for patients, rigorous standards have been
developed to ensure that digital images for medical use are properly archived and
displayed. The Digital Imaging and Communications in Medicine (DICOM) is
one such standard and has become the de facto standard for image processing in
the health professions.

1.2.2 Biology

Biology is a natural science that studies living organisms and how they inter-
act with the environment. Biological research covers a vast array of specialized
subdisciplines such as botany, zoology, cell biology, microbiology, and biochem-
istry. Each of these disciplines relies to some degree on sophisticated computing
systems to acquire and analyze large amounts of image-based data. These mea-
surements ultimately provide information required for tasks such as deciphering
complex cellular processes and identifying the structure and behavior of DNA.

Since image-based measurement is becoming increasingly vital to biological
research, biologists must have basic knowledge in image processing to correctly
interpret and process their results. Part (a) of Figure 1.5 shows a scanning elec-
tron microscope (SEM) image of a rust mite where the length of the mite is on
the order of 60 µm. Part (b) shows the structure of the eye of a fruit fly where
each spherical sensor is on the order of 10 µm in diameter.
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1.2. Why Digital Image Processing? 7

(a) A rust mite (Aceria anthocoptes). (b) The eye of a fruit fly (Drosophilidae).

Figure 1.5. Images in biology.

1.2.3 Biometrics
The security of national, corporate, and individual assets has become a topic
of great importance in the modern global economy as terrorists, con men, and
white-collar criminals pose an ongoing threat to society. When a person boards
an airplane, enters credit card information over the Internet, or attempts to ac-
cess medical records for a hospital patient, it is desirable to verify that the person
actually is who they claim to be. The field of biometrics seeks to verify the iden-
tity of individuals by measuring and analyzing biological characteristics such as
fingerprints, voice patterns, gait, facial appearance, or retinal scans. In most of
these techniques, with the exception of voice recognition, the biological traits are
obtained by the analysis of a digital image.

Biometrics has been used for decades in law enforcement to identify criminals
from fingerprint images. Highly trained experts have traditionally performed fin-
gerprint identification manually by comparing fingerprints of criminal suspects
with fingerprints obtained from a crime scene. Systems are now commonly used
to match fingerprints against large databases of suspects or known criminals.
Specialized hardware is used to first acquire a digital image of an individual’s
fingerprint. Software is then used to analyze the image and compare it with a
large database of known fingerprint images. Since the process is automated, it
is possible to quickly search a very large database and quickly obtain accurate
verification.

The use of palm scans is proving increasingly effective in the field of biomet-
rics. A palm scanner is used to acquire an image of the blood flow through the
veins of the hand in a completely non invasive and contact-free fashion. Since the
veins form a complex three-dimensional structure within a person’s palm, indi-
viduals can be identified with extremely high accuracy, and forgery is extremely
difficult.
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1.2.4 Environmental Science
All life depends upon a healthy environment and the environmental sciences
seek to understand the forces that affect our natural world. Environmental sci-
ence is a broad and interdisciplinary field that includes the study of weather pat-
terns (meteorology), oceans (oceanography), pollution as it affects life (ecology),
and the study of the earth itself (the geosciences).

Data acquisition and analysis plays a key role in each of these fields since
monitoring oceans, forests, farms, rivers, and even cities is critical to proper stew-
ardship. Computer and imaging systems play an increasingly active and central
role in these tasks. Satellite imaging is used to monitor and assess all types of en-
vironmental phenomena, including the effects of wildfires, hurricanes, drought,
and volcanic eruptions. Motion-sensitive cameras have been installed in remote
regions to monitor wildlife population densities. In recent years, these systems
have discovered many new species and have even taken photographs of animals
long believed extinct.

Figure 1.6 shows two enhanced satellite images of St. Louis, Missouri. The
image in Figure 1.6(a) was taken during the great flood of 1993 while the image
in Figure 1.6(b) was taken the following year. Environmental scientists tracked
and measured the extent of the flood and the effect of the flood on terrain, vege-
tation, and city structures through sophisticated imaging systems and software.

(a) Satellite image in 1993.

(b) Satellite image in 1994.

Figure 1.6. Satellite images of the St. Louis flood. (Image courtesy of NASA/Goddard
Space Flight Center Scientific Visualization Studio.)
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1.2.5 Robotics

The field of robotics has made astounding progress in recent years. Robots now
appear on the shelves of commercial toy stores, in industrial manufacturing lines,
and in search and rescue missions. At the heart of most intelligent robots is a set
of image processing routines that is able to process images gathered by the robot’s
“eyes” and determine how the robots should respond to their visually perceived
environment. A team of robotics experts from the University of Southern Florida
was brought in to assist in the search and rescue mission during the days after the
World Trade Center collapse. These robots were specifically designed to navigate
through dangerous situations looking for signs of life.

1.2.6 Professional Sports

Most professional sports leagues are developing computer systems to improve
either the sports telecast or to assist umpires and referees throughout the game.
The US Tennis Association, for example, uses specialized image processing sys-
tems to assist in making line calls. Officials were having increased difficulty with
making correct calls as skilled tennis players can now generate 150 mile-per-hour
serves and 100 mile-per-hour backhands.

Major League Baseball has also installed complex image processing systems
to record the trajectory of each pitch made during a baseball game. Two cameras
track the motion of the ball and are able to triangulate the position to within 1/2
inch accuracy over the entire trajectory of the pitch. A third camera is used to
monitor the batter and determine the strike zone by computing the batter’s knee-
to-chest position. While the system is not used during game play it is used to
augment television broadcasts. High-performance image processing algorithms
superimpose the pitch trajectory and strike zone on instant replays. This gives
sports fans an objective way to decide if the pitch was a ball or a strike. Major
League Baseball does use the system to rate the performance of plate umpires
in calling balls and strikes. At the conclusion of each game, the plate umpire is
given a CD-ROM containing the trajectories of every pitch along with a compar-
ison between the computer and umpire calls made.

Other sports have successfully used image-processing techniques for both
decision-making and aesthetic purposes. Most major networks airing National
Football League games superimpose yellow “first down” markers onto the play-
ing field. These yellow stripes are obviously not actually on the field, but are
applied using real-time image processing techniques. With the decreasing cost
of computational power, it is to be expected that image processing will become
more prevalent in all areas of professional sports.
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1.2.7 Astronomy

Astronomers have long used digital images to study deep space over much of
the electromagnetic spectrum: the Compton Gamma Ray Observatory captures
digital images primarily in the gamma ray spectrum; the Chandra X-Ray Ob-
servatory and the Space Infrared Telescope Facility (also known as the Spitzer
Space Telescope) provide coverage of the x-ray and infrared portions of the spec-
trum, respectively. The most well known telescope covering the visible portion
of the spectrum is the Hubble Space Telescope, which was launched in 1990.
The Hubble Telescope orbits the earth with a reflector-style optics system and a
mirror of 2.4 meters in diameter. The focal length is 57.6 meters and it is able
to take infrared images as well as images in the visible spectrum. Of course the
images are digital since they must be transmitted to ground stations for viewing
and analysis. The Hubble has produced some of the most remarkable images
ever taken of created order.

Figure 1.7 is an image of the Antennae galaxies. These two galaxies are
located in the constellation Corvus and are in the process of collapsing into a

Figure 1.7. Hubble Space Telescope image of the Antennae galaxies. (Image courtesy of
NASA, ESA, and the Hubble Heritage Team.)
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1.2. Why Digital Image Processing? 11

single galaxy. These galaxies are approximately 45 million light years away, and
scientists predict that within 400 million years the two galaxies will have merged
to form a single elliptical galaxy.

1.2.8 Conclusion
Ours is an increasingly visual culture and digital imaging is pervasive across
nearly all professions, disciplines, and academic fields of study. The study of
digital image processing will provide a foundation for understanding how best
to acquire digital images, the nature of information contained within a digital
image, and how to best archive and display images for specific purposes or ap-
plications.

Artwork
Figure 1.3. “Migrant Mother” by Dorothea Lange (1895–1965). Dorothea Lange
was born in Hoboken, New Jersey in 1895 and devoted herself to portrait pho-
tography at a young age. After apprenticing with a photographer in New York
City, she moved to San Francisco and worked predominantly with the upper
class. After about 13 years she developed the desire to see things from a different
point of view and Lange began shooting among San Francisco’s unemployed and
documenting the increasing labor unrest. She was eventually hired by the Farm
Security Administration (FSA) as a photographer and photojournalist. She is
best known for her work with the FSA, which put a human face on the tragedy
of the Great Depression and profoundly influenced the field of photojournalism
in subsequent years. She died on October 11, 1965. Her most famous portrait is
entitled “Migrant Mother,” which is shown in Figure 1.3. The image is available
from the United States Library of Congress’s Prints and Photographs Division
using the digital ID fsa.8b29516.
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5.6. Histogram Equalization 99

5.6 Histogram Equalization
Histogram equalization is a powerful point processing enhancement technique
that seeks to optimize the contrast of an image. As the name of this technique
suggests, histogram equalization seeks to improve image contrast by flattening,
or equalizing, the histogram of an image.

A histogram is a table that simply counts the number of times a value appears
in some data set. In image processing, a histogram is a histogram of sample
values. For an 8-bit image there will be 256 possible samples in the image and
the histogram will simply count the number of times that each sample actually
occurs in the image.

Consider, for example, an 8-bitW×H grayscale image. There are 256 distinct
sample values that could occur in the image. The histogram of the image is a table
of 256 values where the ith entry in the histogram table contains the number of
times a sample of value i occurs in the image. If the image were entirely black,
for example, the 0th entry in the table would contain a value of W ×H (since all
the image pixels are black) and all other table entries would be zero. In general,
for an N -bit W ×H grayscale image where the ith sample is known to occur ni
times, the histogram h is formally defined by Equation (5.10):

h(i) = ni i ∈ 0, 1, . . . , 2N (5.10)

Histograms are typically normalized such that the histogram values sum to 1.
In Equation (5.10) the histogram is not normalized since the sum of the his-
togram values is WH. The normalized histogram is given in Equation (5.11),
where ĥ(i) represents the probability that a randomly selected sample of the im-
age that will have a value of i:

ĥ(i) = h(i)/(WH) = ni/(WH), i ∈ 0, 1, . . . , 2N . (5.11)

A histogram is typically plotted as a bar chart where the horizontal axis corre-
sponds to the dynamic range of the image and the height of each bar corresponds
to the sample count or the probability. Generally, the overall shape of a his-
togram doesn’t convey much useful information but there are several key insights
that can be gained. The spread of the histogram relates directly to image contrast
where narrow histogram distributions are representative of low contrast images
while wide distributions are representative of higher contrast images. Generally,
the histogram of an underexposed image will have a relatively narrow distribu-
tion with a peak that is significantly shifted to the left while the histogram of an
overexposed image will have a relatively narrow distribution with a peak that is
significantly shifted to the right.

Figure 5.8 shows a relatively dark grayscale image and its corresponding his-
togram. The histogram is shifted to the left and has a relatively narrow distribu-
tion since most of the samples fall within the narrow range of approximately 25
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(a) (b)

Figure 5.8. An example histogram: (a) an 8-bit grayscale image and (b) its histogram.

to 80, while relatively few of the images samples are brighter than 128. The
histogram for this example is indicative of an underexposed image—one that
may be improved through histogram equalization.

Histogram equalization is a way of improving the local contrast of an image
without altering the global contrast to a significant degree. This method is es-
pecially useful in images having large regions of similar tone such as an image
with a very light background and dark foreground. Histogram equalization can
expose hidden details in an image by stretching out the contrast of local regions
and hence making the differences in the region more pronounced and visible.

Equalization is a nonlinear point processing technique that attempts to map
the input samples to output samples in such a way that there are equal amounts
of each sample in the output. Since equalization is a point processing technique
it is typically implemented through the use of a lookup table. For a source im-
age, equalization computes the histogram of the source and then constructs a
discrete cumulative distribution function (CDF) which is used as the lookup ta-
ble. Given an N-bit image having histogram h, the normalized CDF Ĉ is defined
in Equation (5.12):

Ĉj =
j∑
i=0

ĥi, j ∈ {0, 1, . . . , 255} . (5.12)

The cumulative distribution function essentially answers the question, “What
percentage of the samples in an image are equal to or less than value J in the im-
age?” Since the resulting CDF lies in the interval [0 . . . 1] it can’t be directly used
as a lookup table since the output samples must lie in the 8-bit range of [0 . . . 255].
The CDF is therefore scaled to the dynamic range of the output image. For an
8-bit image, each entry of the CDF is multiplied by 255 and rounded to obtain
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0 1 3 4
1 2 2 3
1 3 4 4
3 2 5 2

i ĥi Ĉi 7Ĉi

0 1/16 1/16 0
1 3/16 4/16 2
2 4/16 8/16 4
3 4/16 12/16 5
4 3/16 15/16 7
5 1/16 16/16 7
6 0/16 16/16 7
7 0/16 16/16 7

0 2 5 7
2 4 4 5
2 5 7 7
5 4 7 4

i ĥi

0 1/16
1 0/16
2 3/16
3 0/16
4 4/16
5 4/16
6 0/16
7 4/16

(a) (b) (c) (d)

Figure 5.9. Numerical example of histogram equalization: (a) a 3-bit image, (b) normal-
ized histogram and CDF, (c) the equalized image, and (d) histogram of the result.

the lookup table used in histogram equalization. In summary then, histogram
equalization works by (1) computing the histogram of the source image, (2) gen-
erating the CDF of the source image, (3) scaling the CDF to the dynamic range
of the output and (4) using the scaled CDF as a lookup table.

Figure 5.9 gives a numeric example of an underexposed image that is equal-
ized to improve the local contrast. In this figure the 3-bit grayscale image shown
in (a) is used to generate the normalized histogram and CDF shown in (b). Since
the source is a 3 bit image, the CDF is scaled by a factor of seven, the dynamic
range of the 3-bit output, to produce the lookup table used for equalization. In
this example, then, every 0 in the input remains 0 in the output while every 1 in
the input becomes a 2 in the output and so on. The resulting equalized image is
shown in (c) and the histogram of the output is shown in (d). While the result-
ing histogram is not exactly equal at every index, the resulting histogram spreads
the samples across the full dynamic range of the result and does increase local
contrast in the image.

Figure 5.10 shows an underexposed grayscale image in (a) that has the his-
togram shown in (b). The underexposed image is histogram-equalized in (c) such
that the samples are nearly uniformly distributed across the 8-bit range. The his-
togram of the equalized image is shown in (d). The net effect of equalization in
this case is to shift the darker regions upwards in tone thus brightening much of
the image.

Images with poor overall contrast can also be corrected using histogram
equalization, as shown in Figure 5.11. In this case, the image 8-bit source image
of (a) is neither overly dark nor overly bright but has a washed-out look since
most of the samples are in a narrow range of middle gray tone. There are no
strong bright or dark regions in the image as indicated by the histogram in (b).
The equalized image of (c) presents more stark edges (i.e., differences between
sample values are increased) and the histogram of the resulting image has been
generally flattened, as shown in (d).
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(a) Underexposed image. (b) Histogram of the underexposed image.
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(c) Histogram-equalized image. (d) Histogram of the equalized image.

Figure 5.10. Histogram equalization of an underexposed image.
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(a) Low-contrast image. (b) Histogram of the low-contrast image.
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(c) Histogram equalized image. (d) Histogram of the equalized image.

Figure 5.11. Histogram equalization of a low-contrast image.
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(a) Source. (b) Equalized RGB. (c) Equalized intensity.

Figure 5.12. Equalizing a color image.

Histogram equalization can also be done on color images by performing the
grayscale technique on each separate band of the image. Care should be taken
when doing this, however, since the colors will likely be dramatically altered
as a result. If the tonal distributions are different among the red, green, and
blue channels of an image, for example, the lookup tables for each channel will
be vastly different and equalization will alter the color patterns present in the
source. Histogram equalization of a color image is best performed on the in-
tensity channel only, which implies that the equalization should be done on the
brightness band of an image using the HSB or YIQ color spaces, for example.

Figure 5.12 demonstrates how equalization may alter the color balance of a
source image. In this figure, the source image has a largely reddish tint. The
histogram of the red channel is shifted to the high end while the histogram of the
green channel is shifted to the low. When equalization is done on each of the
red, green, and blue channels independently, the color balance is dramatically
altered as seen in (b). When equalization is done on the intensity channel only,
the chromaticity is retained but the brightness levels are altered, as shown in (c).

Since image histograms are so useful in image processing it is advisable
to develop a Histogram class for the purpose of creating and processing his-
togram data. Listing 5.9 shows such a class, where the constructor accepts a
BufferedImage source and the band from which to extract the histogram. The
constructor then determines the maximum possible sample value and allocates a
table of the proper size. The table is filled in by scanning the source and counting
each sample that occurs in the image.

A histogram object can convert itself to an array via the getCounts meth-
ods, it can produce a cumulative distribution function as an array of doubles
via the getCDF method, and it can produce a normalized histogram via the
getNormalizedHistogram method. The histogram class can be used to im-
plement a HistogramEqualizationOp, which is left as a programming exercise.
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1 p u b l i c c l a s s Histogram {
2 p r i v a t e i n t [ ] counts ;
3 p r i v a t e i n t to ta lSample s , maxPossibleSampleValue ;
4

5 p u b l i c Histogram ( Buf feredImage s rc , i n t band ) {
6 maxPossibleSampleValue = getMaxSampleValue ( s rc , band ) ;
7 counts = new i n t [ maxPossibleSampleValue + 1 ] ;
8 t o t a l S a m p l e s = s r c . getWidth ( ) ∗ s r c . ge tHe igh t ( ) ;
9

10 f o r ( Locat ion pt : new Ras te rScanner ( s rc , f a l s e ) ) {
11 i n t sample = s r c . g e t R a s t e r ( ) . getSample ( p t . col , p t . row , band ) ;
12 counts [ sample ]++;
13 }
14 }
15

16 p u b l i c i n t getNumberOfBins ( ) {
17 r e t u r n counts . l e n g t h ;
18 }
19

20 p u b l i c i n t ge tVa lue ( i n t index ){
21 r e t u r n counts [ index ] ;
22 }
23

24 p u b l i c i n t [ ] getCounts ( ) {
25 i n t [ ] r e s u l t = new i n t [ counts . l e n g t h ] ;
26 System . ar raycopy ( counts , 0 , r e s u l t , 0 , counts . l e n g t h ) ;
27 r e t u r n r e s u l t ;
28 }
29

30 p u b l i c double [ ] getCDF ( ) {
31 double [ ] cd f = getNormalizedHistogram ( ) ;
32 f o r ( i n t i =1; i<cd f . l e n g t h ; i ++){
33 cd f [ i ] = cd f [ i −1] + cd f [ i ] ;
34 }
35 r e t u r n cd f ;
36 }
37

38 p u b l i c double [ ] getNormalizedHistogram ( ) {
39 double [ ] r e s u l t = new double [ counts . l e n g t h ] ;
40 f o r ( i n t i =0; i<counts . l e n g t h ; i ++){
41 r e s u l t [ i ] = counts [ i ] / ( double ) t o t a l S a m p l e s ;
42 }
43 r e t u r n r e s u l t ;
44 }
45

46 p r i v a t e i n t getMaxSampleValue ( Buf feredImage s rc , i n t band ) {
47 r e t u r n ( i n t ) Math . pow ( 2 , s r c . getSampleModel ( ) . ge tSampleS ize ( band ) ) − 1 ;
48 }
49 }

Listing 5.9. Histogram class.
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Histograms have thus far been presented as one-dimensional constructs that
process each channel of an image independently. Color histograms, by contrast,
are three dimensional constructs that divide the images color space into volu-
metric bins. Each bin encloses a rectangular volume of colors in the space and
the corresponding bin entry is a count of the number of pixels that are enclosed
by the bin. A color histogram correctly links the individual samples of a pixel
together in a dependent fashion.

The size of the bins determines the resolution of the histogram, where smaller
bins correspond to a greater resolution and larger bin sizes correspond to a
lower resolution. While higher resolution histograms provide more accuracy
in terms of characterizing the color distribution of an image, higher resolutions
also lead to larger memory consumption and a corresponding lack of compu-
tational efficiency. Consider, for example, an 8-bit RGB color image such that
each axis is divided into 256 bins. The color histogram has an impractical total
of 256 × 256 × 256 = 16, 777, 216 bins. The resolution of the histogram can be
reduced by dividing each axis into only 5 bins such that the color histogram then
has a computationally effective total of 5 × 5 × 5 = 125 bins. Each axis of the
color space may be given a resolution independently of the others such that the
Y axis of the YCbCr color space may be given a higher resolution than either the
Cb or Cr color spaces. Consider, for example, an 8-bit YCbCr image such that
the Y axis is divided into 10 bins while each of the Cb and Cr axes are divided
into 5 bins. The corresponding color histogram has a total of 10 × 5 × 5 = 250
bins and has superior resolution in the intensity channel than the two chroma
channels.

Figure 5.13 shows the RGB color histogram for two source images. The
12 × 12 × 12 color histogram of part (a) is shown in (b) where the diameter of
the spheres is directly proportional to the count of each volumetric bin and the
color of each sphere corresponds to the color at the center of each bin. The
12×12×12 color histogram of the source image shown in part (c) is given in (d).
The large density of dark and red pixels of the source image in (a) is reflected in
the distribution of data in the color histogram of (b) while the large density of
light blue pixels is reflected in the distribution of the color histogram of part (d).

Since a color histogram provides a relatively coarse but concise characteri-
zation of an image, a color histogram can be used as a computationally effec-
tive means for comparing the similarity of two images. Color histograms are
often used in content-based image retrieval (CBIR) systems to support efficient
searches of large image databases. A CBIR system maintains a database of im-
ages that can be queried for similarity to a target image. A CBIR system allows
users to find images in the database that are similar to the target image rather
than searching the image database using metadata such as keywords. While two
visually different images may have similar color histograms, the color histograms
can be used as a coarse measure of similarity and serve as a preprocessing step
in a CBIR query.
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(a) Source image. (b) RGB color histogram.

(c) Source image. (d) RGB color histogram.

Figure 5.13. The color distribution of two source images as given by their 12 × 12 × 12 RGB
color histograms.

5.7 Arithmetic Image Operations

Two source images can be added, multiplied, one subtracted from the other or
one divided by the other to produce a single destination. These operations are
known as image arithmetic or image blending. Each of these methods is a point
processing operation where corresponding samples from the two source im-
ages are combined into the destination. Image addition, for example, works by
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Index

3CCD, 47
4-connected component, 299
8-connected component, 299

AbstractDigitalImage (imaging), 52
AC coefficient, 223
acceleration, 329
adaptive thresholding, 200
AddBinaryOp (pixeljelly.ops), 112
affine transform, 174

reflection, 175
rotation, 175
scaling, 175
shearing, 175
translation, 175

AffineTransform (java.awt.geom), 183
AffineTransformMapper (imaging.ops), 188
AffineTransformOp (java.awt.image), 184
aliasing, 220
alpha blending, 115
ArrayDigitalImage (imaging), 52
aspect ratio, 42

backward mapping, 179
band, 38
band pass filter, 243
band stop filter, 243
basis functions, 217
Bayer filter, 47
bicubic interpolation, 181
bilinear interpolation, 180
binary image, 37
BinaryCACEncoder (pixeljelly.io), 271
BinaryImageOp (pixeljelly.ops), 111
bit shifting, 58

blending mode
alpha blending, 115
darken only, 116
diffusion, 116
hard light, 116
lighten only, 116
screen, 116

blurring, 139
BufferedImage (java.awt.image), 62, 63
BufferedImageOp (java.awt.image), 67
BufferedImageOutputStream (pixeljelly.io),

290
Butterworth filter, 240

camera
aperture, 16
f-number, 16
f-stop, 16
optical zoom, 15

CBIR, 106
CCD, 44
chain code, 311

absolute, 312
differential, 312

channel, 38
Chebyshev filter, 242
circular indexing, 128
clamping, 84
classification, 297, 313
closing, 309
CMOS, 44
coding redundancy, 256
color

additive color model, 25
CMY color model, 28

341
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CMYK color model, 29
color depth, 39
color model, 25
color separation, 29
color space, 25
gamut, 25
HSB color model, 30
L1 metric, 33
L2 metric, 33
RGB color model, 26
similarity, 33
subtractive color model, 26
YCbCr color model, 32
YIQ color model, 32
YUV color model, 33

Color (java.awt), 35
color image, 37
ColorModel, 62
ColorModel (java.awt.image), 65
ColorUtilities, 36
Complex (pixeljelly.utilities), 244
complex number, 229

magnitude, 230
phase, 230

component, 298
area, 313
centroid, 315
circularity, 314
compactness, 314
eccentricity, 316
moments, 315
orientation, 316
perimeter, 313

component labeling, 300
compression ratio, 257
computer graphics, 2
computer vision, 2
concurrency, 323
ConcurrentOp (imaging.ops), 328
cone, see photoreceptor
connected path, 299
connectivity, 298
Constant area coding, 268
contrast, 83
convolution, 124

edge problem, 127

convolution theorem, 237
ConvolutionOp (pixeljelly.ops), 137
ConvolveOp (java.awt.image), 134
cover image, 287
cross correlation, 166
CRT, 48
cumulative distribution function, 100
currying, 111

DC coefficient, 223
decoder, 256
delta modulation, 278
demosaicing, 47
DICOM, 6
digital image processing, 2
DigitalImage (imaging), 51
dilation, 306
discrete cosine transform, 217, 222
discrete Fourier transform, 217, 228

distributivity, 233
periodicity, 234
rotation, 233
translation, 233

disjoint-set, 302
dither matrix, 205
dithering, 202

color, 212
error diffusion, 207
Floyd-Steinberg, 208
Jarvix-Judice-Ninke, 209
Sierra dithering, 209
Stucki, 209

DitherMatrixOp (pixeljelly.ops), 206
dynamic thresholding, 200

edge, 144
edge detection, 144
edge enhancement, 155
edge map, 152

encoder, 256
energy compaction, 226
erosion, 306
error diffusion, 207
ErrorDiffusionOp (pixeljelly.ops), 210
exposure, 82
extended padding, 128
eye
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cornea, 18
fovea, 18
iris, 18
optic nerve, 19
perimetric angle, 18
pupil, 18
retina, 18
rods and cones, 18
visual axis, 18

FalseColorOp (pixeljelly.ops), 98
fast Fourier transform, 247
feature, 313
feature vector, 313
FFT, 247
flood filling, 300
Floyd-Steinberg dithering, 208
FloydSteinbergDitheringOp (pixeljelly.ops),

212
forward mapping, 178
frequency, 42

gamma correction, 92
GammaOp (pixeljelly.ops), 95
Gaussian filter, 242
geometric operations, 173
GeometricTransformOp (imaging.ops), 188
GIF, 284
gradient, 145
grayscale image, 37

halftoning, 198
analog, 198
digital, 198

high dynamic range imaging, 21
high pass filter, 242
histogram, 99

color, 106
Histogram (pixeljelly.features), 104
histogram equalization, 99
homogeneous coordinate, 174
homogeneous transformation matrix, 174

ideal filter, 239
image

acquisition, 43
continuous tone, 44

frequency, 42
quanitization, 44
resolution, 42
sampling, 44

image arithmetic, 107
image blending, 107
image compression, 255
image frequency, 217
ImageComponent (pixeljelly.gui), 76
ImageDecoder (pixeljelly.io), 266
ImageEncoder (pixeljelly.io), 264
ImageIO (javax.imageio), 66
ImagePadder (pixeljelly.utilities), 129
ImageTiler (imaging.scanners), 324
immediate mode, 62
indexed image, 60
interpixel redundancy, 255
Interpolant (imaging.utilities), 186
interpolation, 180
InverseMapper (imaging.utilities), 187
invertibility, 221
InvertOp (pixeljelly.ops), 73

Jarvis-Judice-Ninke dithering, 209
Java Advanced Imaging (JAI), 329
Java Media suite, 329
JPEG, 280

kernel, 124
Kernel (java.awt.image), 134
Kernel2D (pixeljelly.utilities), 135
key element, 124

least significant bit embedding, 287
lens, 15

focal length, 15
magnification factor, 15
thin lens equation, 15

light, 13
amplitude, 13
frequency, 13
wavelength, 13

LinearArrayDigitalImage (imaging), 57
Location (pixeljelly.scanners), 71
logical operators, 113
lookup tables, 90
LookupOp (java.awt.image), 91
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lossless encoding, 259
lossy encoding, 259
low pass filtering, 238
LSBSteganographer (pixeljelly.utilities), 292

magic number, 266
magnitude of gradient, 151
MagnitudeOfGradientOp (pixeljelly.ops), 152
Mask (pixeljelly.utilities), 159
median filter, 157
mezzotint, 204
morphology, 297

nearest neighbor interpolation, 180
NearestNeighborInterpolant (imaging.utilities),

187
nonlinear geometric transformations, 191
normalized cross correlation, 167
NullOp (pixeljelly.ops), 71

opening, 309
OpThread (imaging.ops), 326
OrBinaryOp (pixeljelly.ops), 115

packed pixel, 57
PackedPixelImage (imaging), 60
packing, 58
patterning, 202
periodic noise, 244
photoreceptor

cone, 18
rod, 18

pixel, 38
pixel resolution, 42
PluggableImageOp (pixeljelly.ops), 76
predictive coding, 275
Prewitt operator, 149
process, 323
pseudo coloring, 95
psycho-visual redundancy, 255

quadtree, 268
quantization, 44

random dithering, 204
RandomDitherOp (pixeljelly.ops), 204
range filter, 165

rank filering, 157
RankOp (pixeljelly.ops), 162
raster, 53
raster scan, 56
RasterScanner (pixeljelly.scanners), 71
raw format, 257
reconstruction, 182
reconstruction filter, 48
reflection, 175
reflective indexing, 128
ReflectivePadder (pixeljelly.utilities), 130
regional processing, 81, 123
registration, 173
relative compression ratio, 257
resampling, 182
rescale, 82

bias, 82
gain, 82

RescaleOp (java.awt.image), 90
Roberts cross operators, 150
rod, see photoreceptor
root mean squared error, 257
rotation, 175
run length encoding, 259
RunLengthEncoder (pixeljelly.io), 266

salt and pepper noise, 157
sample, 38
sampling, 44
savings ratio, 257
scaling, 175
scanning, 69
segmentation, 297, 317
separability, 133
SeperableKernel (pixeljelly.utilities), 137
sharpening, 155
shearing, 175
Sierra dithering, 209
SimpleConvolveOp (pixeljelly.ops), 126
single source, 67
sinusoid, 218
smoothing, 139
Sobel operator, 150
spectrum, 231

phase, 231
power, 231

Steganographer (pixeljelly.utilities), 289
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steganography, 286
stego image, 287
Stucki dithering, 209
System.arraycopy (java), 54

template matching, 166
thread, 323
Thread (java), 324
thresholding, 199
TiledPadder (pixeljelly.utilities), 130
translation, 175
transparency, 115
TwirlMapper (imaging.utilities), 193

uniform filter, 139
union-find, 302
unpacking, 58

vision
brightness adaptation, 20
glare limit, 20
instantenous range, 20
photopic, 18

scotopic, 18
scotopic threshold, 20
simultaneous contrast, 22

wavelet, 249
Coiflet, 251
Daubechies, 251
Haar, 251
mexican hat, 251

weighted blur filter
conical, 141
Gaussian, 141
pyramid, 140

windowing, 235
Bartlett, 235
Blackman, 235
Hamming, 236
Hanning, 235

WritableRaster (java.awt.image), 62, 65

zero padding, 128
ZeroPadder (pixeljelly.utilities), 129, 131


